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a b s t r a c t 

Multiply-distorted images, that is, distorted by different types of distortions simultaneously, are so com- 

mon in real applications. This kind of images contain multiple overlaying stages (e.g., acquisition, com- 

pression and transmission stage). Each stage will introduce a certain type of distortion, for example, 

sensor noise in acquisition stage and compression artifacts in compression stage. However, most cur- 

rent blind/no-reference image quality assessment (NR-IQA) methods are specifically designed for singly- 

distorted images, thus resulting in their deficiency in handling multiply-distorted images. Motivated by 

the hypothesis that human visual system (HVS) is adapted to the structural information in images, we 

attempt to assess multiply-distorted images based on structural degradation. To this end, we use both 

first- and high-order image structures to design a novel referenceless quality metric for multiply-distorted 

images. Specifically, we leverage the quality-aware features extracted from both the gradient-magnitude 

map and contrast-normalized map, and further improve the performance by making use of redundancy 

of features with random subspace method. Experimental results on popular multiply-distorted image 

databases verify the outstanding performance of the proposed method. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent years have witnessed a fast development of imaging de-

ices, such as digital cameras, and smart phones. The fast devel-

pment of imaging devices has put forward the requirement for

igh quality of experience of end-users [1] . In practice, multiply-

istorted images, namely images with multiple distortion types,

re common in real applications. The different types of distor-

ions often arise from overlaying stages, such as signal acquisition,

ompression and transmission stages. The appearance of multiple

istortions makes the problem of blind/no-reference image qual-

ty assessment (NR-IQA) even more complex, since the modeling

f the interaction between the single distortions and their inter-

ctive effects on the overall visual quality remains still challeng-

ng [2] . Besides, most existing NR-IQA methods are designed for

ingly-distorted images and struggle to achieve satisfying results

n multiply-distorted images [3–5] . Thus, it is still demanding to

evelop new NR-IQA methods for multiply-distorted images. 

Many early works attempt to assess the perceived quality of

istorted images by considering structural information of an im-
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ge. It has been widely acknowledged that structural information,

ike the image gradient, plays a key role in evaluating perceptual

uality [6–8] . To date, there have existed many successful IQA

ethods based on structural degradation [4,9–11] . Taking the suc-

essful structural similarity index (SSIM) and its variants [9,10] for

xample, these structural-based methods achieve remarkable per-

ormance by exploring the structural information. The performance

dvantage comes from the fact that human visual system (HVS) is

ighly adapted to extract the structural information from a scene.

n general, it would have two main advantages based on structural

egradation to evaluate image quality: 1) it is an effective way to

easure the degree of distortion based on structural degradation;

) structural degradation contributes to distinguishing different

ypes of image distortions. In other words, structural degradation

ntuitively reflects the overall quality of the perceived image. 

Inspired by the above observations, some recent NR-IQA

ethods [4,11] have also been developed for multiply-distorted

mages based on the potential structural degradation, given that

he image structure conveys essential visual information from a

cene. In these methods, local binary pattern (LBP) operators are

pplied to extract structural features from different domains, such

s the gradient domain [4] and the perceptual opponent-color

omain [11] . Unfortunately, these methods do not fully exploit

he image structural information. More precisely, most existing
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methods only utilize first-order image structures (e.g., gradient in-

formation) without taking account of high-order image structures

(e.g., texture information). In practice, however, high-order image

structures also play a vital role in evaluating the visual quality,

due to the fact that HVS has separate mechanisms to process the

first- and high-order image structures [12] . 

To make use of various types of image structures better, we

develop a novel blind/NR-IQA metric of multiply-distorted images

based on structural degradation, which considers both the first-

and high-order image structures. In fact, the first-order image

structures characterize the main structures of images (e.g., edges),

while the high-order image structures represent fine-grained

details of images (e.g., textures) [12] . Such two structural features

are sensitive to different types of distortions, which thus renders

them effective to reflect the perceptual quality of images. In order

to utilize such image structures better, we attempt to extract a

number of quality-aware features from the gradient magnitude

map and contrast-normalized map, which represent the first- and

high-order structural patterns of distorted images, respectively.

Specially, the rotation invariant uniform LBP operator is adopted

to extract the first-order structural patterns, while a generalized

center-symmetric LBP (GCS-LBP) operator is employed to extract

high-order structural patterns. For clarity, the main contributions

of the work are summarized as below: 

• Based on structural degradation, we utilize both the first- and

high-order image structures to characterize the image structural

features. 

• Technically, when extracting the first-order structural informa-

tion, we employ four directional high-pass filters (5 × 5) en-

compassing the diagonal directions to incorporate neighboring

information. When extracting the high-order information, we

propose a generalized center-symmetric LBP to resist the visual

artifacts introduced by the contrast modifications. 

• In order to avoid overfitting, we apply the random subspace

method [13] in the feature space. Experimental results confirm

that our proposed method acquires superior performance, by

comparison with prevailing full reference (FR) and no reference

IQA methods. 

The rest of this paper is constructed as follows. In Section 2 ,

we briefly review some related work on objective IQA metrics. In

Section 3 , we introduce the proposed IQA metric in detail, and an-

alyze the effects of feature set. Then, experimental results are pro-

vided in Section 4 . Finally, we draw the conclusions in Section 5 . 

2. Related work 

Objective IQA algorithms aim to evaluate image visual qual-

ity automatically according to computational models, which have

been successfully and widely applied in the field of image process-

ing, such as image enhancement [14,15] , image denoising [16–18] ,

and image classification [19,20] . According to the amount of avail-

able information from the pristine image (reference image), exist-

ing objective visual quality metrics can be roughly divided into

full-reference (FR), reduced-reference (RR) and no-reference (NR)

IQA metrics. Most early IQA methods belong to the class of FR-IQA

methods. Traditional FR-IQA metrics like peak signal-to-noise ratio

(PSNR) and mean square error (MSE) are the most commonly-used

IQA metric in different applications for their simplicity and effi-

ciency. Nevertheless, it is shown that both PSNR and MSE can not

coincide with human subjective ratings very well [1,21] . To over-

come this drawback, more advanced FR-IQA methods that highly

agree with human perceptual quality have been proposed, such as

SSIM [22] , OSS-SSIM [10] , VIF [23] , MAD [24] , ADM [25] , FSIM [6] ,

GMS [7] , and GMSD [8] . RR-IQA algorithms [26,27] tend to com-

pare the partial information between the distorted image and the
orresponding reference image. However, in most practical appli-

ations (e.g., denoising, enhancement), the reference image is gen-

rally unavailable, thus constraining the usage of FR- and RR-IQA

ethods. Hence, it is of high demand to design NR-IQA methods

n practice, without access to reference image. 

Most of early NR-IQA metrics have been specifically designed to

eflect the visual quality of images in particular applications, like

aussian blur (GB) [28,29] , white noise (WN) [30] , JPEG compres-

ion [29,31,32] , and contrast distortion [33] . Thus, these methods

an be viewed as distortion-specific methods by assuming that the

rior knowledge of the distortion is provided beforehand or the

istortion type is known in advance, which obstructs the applica-

ion of these methods in the real-world scenario. 

In contrast with early distortion-specific methods, recent

eneral-purpose NR-IQA methods can handle images distorted by

arious distortion types. Based on whether to use subjective scores

uring the learning process, general-purpose NR-IQA methods can

e further categorized as opinion-aware and opinion-free methods.

he opinion-free methods require no access to subjective human

atings in the learning process [34,35] . One approach is proposed

n [34] to fit a multivariant Gaussian (MVG) model to characterize

he regularities of the natural images based on the spatial domain

SS features from natural (distortion-free) images, which is further

mproved in [35] by combing more perceptual features from image

radient, log-Gabor and color domains. 

However, most existing NR-IQA methods fall under the category

f opinion-aware methods by learning the computational mod-

ls based on distorted images and the associated subjective hu-

an ratings, which generally takes two stages. The first stage is

o extract quality-aware features that represent the image quality

rom distorted images, while the second stage is to learn a regres-

ion model to map the quality-aware features to the final qual-

ty score. Intuitively, the choice of the extracted quality-aware fea-

ures play a vital role in such learning based methods. An ideal

et of quality-aware features should be insensitive to image con-

ent changes (e.g., illumination change), and sensitive to diverse

mage distortions. One kind of popular features are based on natu-

al scene statistics (NSS), given the assumption that natural images

wn regular statistics and various distortion types tend to violate

uch regularity to certain different degrees. According to such as-

umptions, many NR-IQA methods take advantage of naturalness of

SS in different domains, such as spatial NSS [36] , DCT NSS [37] ,

avelet NSS [38] , and hybrid of several types of transform do-

ain NSS [39] . Other efficient handcrafted features have also been

esigned, such as image gradients [40,41] , image filter responses

42,43] , and image entropies [14,44] . In [40] , the authors exploit

aplacian of Gaussian responses and the joint statistics of image

radients as quality-aware features. Apart from first-order deriva-

ives (e.g., image gradients) mentioned above, high-order deriva-

ives of images are also extracted for NR-IQA task in [42,43] . For

nstance, in [44] , the spatial NSS features and free energy princi-

le based features are combined, leading to promising performance

n evaluating image quality. With the rapid development of neu-

al network, some opinion-aware methods input raw local image

atches for neural networks and attempt to learn quality-aware

epresentation [45,46] instead of designing handcrafted features.

or a comprehensive review on NR-IQA methods, the readers can

efer to [47] . 

. Proposed method 

The proposed method is based on the HVS’s sensitivity to struc-

ural degradation. To make use of the structural information bet-

er, we extract a number of first-order and high-order features,

hich respectively characterize the main structures of images (e.g.,

dges), and fine-grained details of images (e.g., textures). Such two
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Fig. 1. Flowchart of the proposed method. 

Fig. 2. Operators for calculating the gradient value. 
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tructural features are sensitive to different types of distortions,

hus rendering them effective to reflect the perceptual quality of

mages. We illustrate the flowchart of our method in Fig. 1 , which

ill be detailed as follows. At first, we extract two sets of features,

n which the first feature set is extracted from the image gradient-

agnitude map to account for first-order image structures while

he second feature set is extracted from the contrast-normalized

ap to account for the high-order image structures. Then, these

wo sets of feature are fused to represent image structural infor-

ation, followed by mapping the extracted features to the final

core of perceptual quality with learning methods, such as support

ector regression (SVR). 

. First-order feature set 

As shown in [12,41] , first-order patterns characterize luminance

ariations, i.e. , image gradient information. It is well acknowledged

hat image gradients convey prominent visual information (e.g.,

dges) for human visual system [7,8] , since the center-surround

ell in eyes conducts a local comparison that can be treated as

radient operators [4 8,4 9] . In IQA task, gradient magnitude (GM)

as been widely employed in [7,8,41,49] because different distor-

ions can be properly reflected from the gradient magnitude. As is

hown in Fig. 3 , we display an intuitive example with four sample

mages and their corresponding GM maps (the middle row). 

To calculate the image gradient, the Sobel and Prewitt filters

re widely-used gradient operators, which are used to extract the

rst-order image structures [4,43] due to their simplicity and effi-

iency. Then the GM is often expressed as the root of the sum of

he squares of image gradients along horizontal and vertical direc-

ions. However, using such simple filters to compute image gradi-

nts will result in some issues: (1) these filters are often too small

3 × 3) to encompass sufficient adjacent information; (2) these fil-

ers neglect neighboring information of some directions (e.g., diag-

nal directions), which also contribute to the structural informa-

ion for image understanding. 

To extract more neighboring information, we adopt four direc-

ional high-pass filters M k (k = 1 , 2 , 3 , 4) (see Fig. 2 ) to compute

he image gradients. After that, the GM map is computed as the

aximum weighted average of difference of image patch centered

t each pixel, i.e., 

 (i, j) = max 
k =1 , 2 , 3 , 4 

mean2 (| I � M k | (i, j)) , (1)
here | ·| denotes the absolute value operator, the symbol “�” rep-

esents the convolution operation, and mean2( ·) stands for the av-

rage value of a matrix. I and G denote the counterpart of GM map

nd its corresponding distorted image; i and j represent the pixel

osition within an image. 

After that, image primitive microstructures (e.g., edges, lines)

n the GM map can be described by the basic LBP operator [50] ,

hich can describe the relation by calculating differences between

 pixel and its adjacent pixels. Using the LBP operator in the GM

ap, the LBP code at each pixel can be expressed as 

BP P,R = 

P−1 ∑ 

p=0 

s (G p − G c ) · 2 

p , (2)

n which 

 (G p − G c ) = 

{
1 , G p − G c ≥ 0 

0 , otherwise , 
(3) 

here G c and G p are the gradient magnitudes at the center of

eighborhood and its neighboring pixels; P stands for the number

f neighboring pixels, and R denotes the radius of the surrounding

eighborhood. 

To achieve rotation invariance, a variant of LBP operator, called

he rotation-invariant and uniform variant LBP, can be formulated

s 

BP 

riu2 
P,R = 

{∑ P−1 
p=0 s (G p − G c ) , if U( LBP P,R ) ≤ 2 

P + 1 otherwise , 
(4) 

here U is the uniform measure that calculates the number of bit-

ise transitions, and LBP riu2 
P,R has U value of at most 2. The uniform

easure U can be computed by 

( LBP P,R ) = || s (G 0 − G c ) − s (G P−1 − G c ) || 

+ 

P−1 ∑ 

p=1 

|| s (G p−1 − G c ) − s (G p − G c ) || . (5) 

Compared with the basic LBP P, R operator with 2 P patterns, the

BP riu2 
P,R operator would have only P + 2 patterns, and can detect

ifferent microstructures (e.g., edge, lines and spots). However, it

nly encodes the sign of the differences between the central pixel

nd its corresponding adjacent pixels. As shown in [51,52] , the

agnitude components of the differences also contribute to ad-

itional discriminant information. To encode such information, we
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Fig. 3. Gradient magnitude and the corresponding LBP maps under different multiple distortions. (From left to right) The first to fourth columns are the results of pristine 

image, image with GB+JPEG, image with GB+WN, and image with GB+JPEG+WN, respectively. (From top to down) The first to third rows show sample images, the associated 

gradient magnitude maps, and LBP maps, respectively. . 
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use the gradient magnitude as the LBP riu2 
P,R weight of each pixel, the

normalized weighted LBP histogram can be expressed as 

H LBP (h ) = 

∑ M 

i =1 

∑ N 
j=1 G (i, j) · f ( LBP 

riu2 
P,R (G (i, j)) , h ) ∑ M 

i =1 

∑ N 
j=1 G (i, j) 

, (6)

with 

f (m, n ) = 

{
1 , m = n 

0 , otherwise , 
(7)

where h ∈ [0 , P + 1] is the possible LBP patterns and the gradient

magnitude G ( i, j ) is assigned to the weight of LBP histogram; M

and N represent the image size. In such a way, we can extract the

first-order image structures with high-contrast changes. 

To illustrate the effects of the LBP operator under multiple dis-

tortions, four sample images and their associated LBP maps are ex-

hibited in Fig. 3 , in which the first row contains the source im-

age and three distorted images corrupted by Gaussian Blur em-

bedded by JPEG compression (GB + JPEG), Gaussian Blur embedded

by white noise (GB + WN), and Gaussian Blur embedded by JPEG

compression and white noise (GB + JPEG + WN), while the third row

shows their corresponding LBP maps in the GM maps. As shown

in Fig. 3 , distinct image distortions exhibit the LBP patterns with

their own characteristics, thus rendering it effective to characterize

various distortions. 

B. High-order feature set 

As stated above, it is effective to detect the first-order patterns,

which describe the luminance changes of images by a linear filter.

Although linear filters can simplify calculation in the detection of

image structures, they limit the types of image structures that can

be obtained from image statistics. For instance, HVS can also detect

fine image structures (e.g., texture), where there is no variation in
ean luminance. Moreover, from the analysis in [12] , we can know

hat such fine structures belong to high-order patterns, which can

ot be directly detected by linear filters. 

To extract the high-order image structures, we first apply local

ontrast normalization operation to luminance domain due to

he fact that the local contrast normalization operation has a

ecorrelating effect [53] . Such a nonlinear operation is often used

o imitate the HVS’s nonlinear masking phenomenon by mean

ubtraction and divisive normalization. Here, we apply similar

reprocessing model as [34,36] to intensity image I to produce the

ormalized version 

ˆ I of I, i.e. , 

ˆ 
 (i, j) = 

I(i, j) − μ(i, j) 

σ ( i, j) + const 
, (8)

here const is a small positive value for avoiding division-by-zero,

 and j are the pixel position indices, and the mean value and

tandard deviation of an image patch are computed as 

(i, j) = 

X ∑ 

x = −X 

Y ∑ 

y = −Y 

w x,y I(i + x, j + y ) , (9)

(i, j) = 

√ 

X ∑ 

x = −X 

Y ∑ 

y = −Y 

w x,y [ I(i + x, j + y ) − μ(i, j)] 2 , (10)

here w = { w x,y | x = −X , . . . , X , y = −Y, . . . , Y } is a Gaussian kernel

unction with unit volume. 

Fig. 4 displays an intuitive example of local contrast normal-

zation. Note that the local mean subtraction process guarantees

hat the image patch of the response results have zero mean lumi-

ance, and thus the contrast-normalized results are invisible to lin-

ar filters. Moreover, division by local contrast strengthens image

tructures of low or moderate contrast. From Fig. 4 , it is observed
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Fig. 4. Sample images and the corresponding contrast-normalized maps by local contrast normalization under different multiple distortions. (From left to right) The first 

to fourth columns are the results of pristine image, image with GB+JPEG, image with GB+WN, and image with GB+JPEG+WN, respectively. (From top to down) The first to 

second rows show sample images, and the contrast-normalized maps by local contrast normalization, respectively. 
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hat the fine image structures (e.g., rooftop tiles) become clearer

fter local contrast normalization. Thus, the contrast-normalized

aps of the image characterize fine-detail structures related to

bject surfaces, which belong to the high-order patterns. Then

e attempt to extract the high-order features from the contrast-

ormalized map 

ˆ I . Nevertheless, the contrast modifications tend to

reate visual artifacts [54] . From Fig. 4 , we can observe that the

oise and compression scheme patterns are also enhanced. In such

ases, the standard LBP riu2 
P,R operator is not able to characterize the

uality-aware features well. To alleviate this issue, we present a

ovel generalized center-symmetric LBP (GCS-LBP) operator, a ro-

ust variant of the basic LBP, to extract high-order features. The

CS-LBP encoding map for each image is formulated as 

CS-LBP R,P,T = 

P/ 2 −1 ∑ 

p=0 

ˆ s T (| ̂ I p − ˆ I p+(P/ 2) | )2 

p , (11) 

here ˆ I p and 

ˆ I p+(P/ 2) denote the center-symmetric pairs of pixels

mong P pixels, which are equally spaced on a neighborhood; the

unction ˆ s T (·) is 

ˆ s T (y ) = 

{
1 , y > T 
0 , otherwise , 

(12) 

here T is a small threshold value in the range of [0,1], and the

roposed GCS-LBP has only 2 P /2 histogram bins. 

. Multi-scale feature sets 

In the design of our metric, a multi-scale model is also taken

nto account, since the recent research has revealed that HVS per-

eives image edges in a coarse-to-fine strategy [55] . In practice,

he coarser scale is formed by low-pass filtering and then down-

ampled by a factor of two. In our recent work [56] , we attempt to

eek for the optimal scale based on the given viewing distance and

he image size. As shown in [56] , an appropriate scaling coefficient

 is close to the square root of the ratio of the focused visual scope

nd the image size 

 = 

√ 

1 

4 tan ( θh 

2 
) · tan ( θw 

2 
) 

·
(

h 

d 

)2 

· w 

h 

, (13) 

here h, w , and d denote the image height, the viewing dis-

ance and image width respectively; θh and θw 

represent horizon-

al and vertical visual angles. From the analysis in [56] , we found
 = 0 . 4955(≈ 0 . 5) works well. Thus the used downsampling factor

2” can be viewed as approximately optimal in given viewing con-

itions. 

To consider varying image resolution and viewing distance [36] ,

ur feature sets, i.e. , LBP riu2 
P,R and GCS-LBP histograms, are extracted

rom the GM maps and contrast-normalized maps in three scales.

o be specific, the coarser scale is first processed by a low-pass

lter, followed by a downsampling operation with a factor of two.

herefore, the extracted feature sets have 26 components at each

cale, thus 78 components in total. 

. Analysis of LBP operators and feature sets 

As stated above, we have used two kinds of LBP operators, i.e. ,

BP riu2 
P,R and GCS-LBP, to extract the first-order and high-order im-

ge structures, respectively. Both of these two operators belong to

ariants of the standard LBP. There are some similarities and dif-

erences between these two kinds of LBP. The main similarities

ie in two aspects: 1) both of them compute the pixel differences

etween the neighboring pixels; 2) both of these two operators

ave much fewer patterns (histogram bins) than the standard LBP

2 P bins). The main differences between them can be summarized

s follows: (1) for each pixel, GCS-LBP needs a proper threshold

alue T to determine whether to encode the corresponding pixel

ifferences, while LBP riu2 
P,R uses the sign information of pixel dif-

erences directly; (2) GCS-LBP computes the pixel differences be-

ween center-symmetric pairs of pixels along a circular window,

hile LBP riu2 
P,R computes the pixel differences between the center

ixel and its neighboring pixel along a circular window. Compared

ith LBP riu2 
P,R , GCS-LBP is tolerant to illumination changes, image

oise and small perspective distortions. Therefore, it is more suit-

ble to extract the high-order image structures in the contrast nor-

alized map, where there are additional visual artifacts created by

he contrast modifications. 

For feature sets, the proposed method consists of two sets of

uality-aware features, which characterize the first- and high-order

nformation. To have an intuitive understanding of the comple-

entary role of the first- and high-order features, we provide a

ew concrete examples in Fig. 5 , from which we can see that the

rst row displays a pristine image, and its distorted versions un-

er various multiple distortions. The second and third rows show

he first-order features (weighted LBP histogram) and high-order

eatures (GCS-LBP histogram), respectively. We can have the fol-

owing observations. The LBP riu2 
8 , 1 have 10 distinct patterns. Among
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Fig. 5. Examples to illustrate the contribution of first-order and high-order information. (From left to right) The first to fourth columns are the results of pristine image, 

image with GB+JPEG, image with GB+WN, and image with GB+JPEG+WN, respectively. (From top to down) The first to third rows show sample images under different 

distortions, the associated weighted LBP maps, and GCS-LBP maps, respectively. 
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them, pattern 0 and 8 denote bright/dark spot or flat area; pat-

terns 1–7 stand for edges of varying curvatures; pattern 9 repre-

sents the non-uniform patterns [50] . The GB + JPEG and GB + WN

distortions smooth image edge and thus widen edge patterns, but

increase pattern 5, caused by blocking effect and false edge. More

multiple distortion such as GB + JPEG + WN further degrades the im-

age information, thus leading to a more flat histogram. Similarly,

the GCS-LBP has 16 distinct patterns. Among them, pattern 0 de-

notes the low-contrast structures (e.g., flat area), while the other

patterns represents texture information of varying contrast. From

Fig. 5 , we can observe that the two distorted images with GB + JPEG

and GB + WN share similar weighted LBP histograms, which indi-

cates that the first-order feature can not distinguish the distortion

between GB + JPEG and GB + WN well. By contrast, their GCS-LBP

histograms exhibit different patterns and provide useful informa-

tion for visual quality estimation. Hence, we adopt both first- and

high-order feature set together in this work, since these two types

of feature sets play a mutually complementary role in visual qual-

ity evaluation task. 

E. Regression module for quality evaluation 

After the training set is provided, the commonly used SVR

[57] is used to learn the regression module in our method. The

training set can be represented as { (x 1 , y 1 ) , . . . , (x r , y r ) } , where

x i ∈ R n denotes the extracted feature vector and y i stands for its

corresponding human score. The standard form of SVR can be writ-

ten as follows: 

min 

w ,b, ε ε ε , ε ε ε ∗
1 
2 

w 

T w + C 
{∑ r 

i =1 ε i + 

∑ r 
i =1 ε 

∗
i 

}
(14)

subject to w 

T φx + b − y ≤ ε + ε (15)
i i i 
y i − w 

t φ(x i ) − b ≤ ε + ε ∗
i 

(16)

ε i , ε 
∗
i 

≥ 0 , i = 1 , . . . , r, (17)

here C is a trade-off parameter, and K(x i , x j ) = φ(x i ) 
T φ(x j ) is

he kernel function. 

The traditional SVR uses the whole feature set for training. For

he traditional SVR, overfitting happens when the training set is

elatively small compared to the high dimensionality of the feature

ector. In order to avoid overfitting, we apply the random subspace

ethod [13] which is similar to bagging. However, unlike bagging

hat bootstraps training samples, random subspace method per-

orms the bootstrapping in the feature space. Specifically, we sam-

le a small subset of features to reduce the discrepancy between

he training data size and the feature vector length. Using a ran-

om sampling method, we construct a multiple number of SVRs.

e then combine these SVRs to construct a more powerful model

o solve the overfitting problem as well as reducing the time com-

lexity. In this work, we adopt the radial basis function (RBF) for

ts simplicity and efficiency. We have trained M ( M = 5 ) SVR mod-

ls, where we randomly choose 60 dimensions of features for each

odel. 

. Experimental results 

.Databases and performance measures 

The proposed method is specifically designed for multiply-

istorted images. In this work, we have tested our method on two

ublic multiply-distorted databases, i.e. , MLIVE [58] , MDID2013
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Table 1 

Performance comparison with competing IQA methods. The best results are highlighted in bold. 

IQA method Type MLIVE (450 images) MDID2013 (324 images) MDID2016 (1600 images) 

SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE 

FR-IQA methods 

PSNR FR 0.728 0.817 10.870 0.644 0.653 0.035 0.578 0.616 1.735 

VSNR FR 0.828 0.882 8.883 0.635 0.656 0.035 0.659 0.683 1.608 

SSIM FR 0.903 0.927 6.967 0.622 0.656 0.036 0.770 0.791 1.347 

IW-SSIM FR 0.911 0.939 6.636 0.888 0.887 0.023 0.889 0.896 0.975 

OSS-SSIM FR 0.919 0.931 6.682 0.764 0.731 0.034 0.692 0.706 1.558 

VIF FR 0.914 0.932 6.761 0.906 0.915 0.021 0.930 0.937 0.771 

MAD FR 0.895 0.915 7.606 0.857 0.862 0.023 0.724 0.744 1.471 

ADM FR 0.909 0.924 7.050 0.830 0.849 0.025 0.708 0.721 1.5255 

FSIM FR 0.895 0.917 7.039 0.750 0.770 0.031 0.887 0.897 0.974 

GMS FR 0.887 0.914 7.430 0.786 0.804 0.028 0.861 0.877 1.056 

IGM FR 0.888 0.924 7.195 0.878 0.882 0.022 0.855 0.867 1.096 

VSI FR 0.878 0.910 7.655 0.730 0.744 0.031 0.856 0.870 1.085 

Pro + S-SVR NR 0.952 0.956 5.552 0.923 0.935 0.017 0.888 0.893 0.993 

Pro + M-SVR NR 0.958 0.960 5.445 0.929 0.940 0.017 0.890 0.897 0.967 

NR-IQA methods 

BIQI NR 0.884 0.905 7.831 0.863 0.883 0.023 0.627 0.670 1.634 

NIQE NR 0.789 0.858 9.489 0.614 0.645 0.037 0.649 0.670 1.635 

ILNIQE NR 0.901 0.914 7.538 0.707 0.709 0.034 0.689 0.724 1.518 

BLIINDS2 NR 0.888 0.904 7.981 0.808 0.844 0.027 0.778 0.796 1.334 

DIIVINE NR 0.866 0.899 8.256 0.836 0.846 0.027 0.551 0.565 1.817 

CORNIA NR 0.901 0.917 7.587 0.898 0.905 0.020 0.783 0.781 1.375 

BRISQUE NR 0.900 0.924 7.143 0.819 0.833 0.027 0.770 0.790 1.351 

GMLOG NR 0.834 0.873 9.165 0.825 0.831 0.026 0.850 0.857 1.132 

NFERM NR 0.898 0.917 7.459 0.855 0.871 0.024 0.451 0.495 1.914 

SISBLM NR 0.907 0.925 7.194 0.886 0.885 0.023 0.655 0.632 1.707 

GWH-GLBP NR 0.941 0.947 5.919 0.903 0.912 0.020 0.885 0.890 1.004 

Pro + S-SVR NR 0.952 0.956 5.552 0.923 0.935 0.017 0.888 0.893 0.993 

Pro + M-SVR NR 0.958 0.960 5.445 0.929 0.940 0.017 0.890 0.897 0.967 
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Table 2 

Performance of the statistical significance test on the SRCC of different metrics 

across 10 0 0 times. The symbols “1” or “0” indicates that our method is statistically 

(significance level 0.05) better, or indistinguishable than the corresponding meth- 

ods. 

IQA method Type MLIVE (450 images) MDID2013 (324 images) 

SRCC PLCC RMSE SRCC PLCC RMSE 

FR-IQA methods 

PSNR FR 1 1 1 1 1 1 

VSNR FR 1 1 1 1 1 1 

SSIM FR 1 1 1 1 1 1 

IW-SSIM FR 1 1 1 1 1 1 

OSS-SSIM FR 1 1 1 1 1 1 

VIF FR 1 1 1 1 1 1 

MAD FR 1 1 1 1 1 1 

ADM FR 1 1 1 1 1 1 

FSIM FR 1 1 1 1 1 1 

GMS FR 1 1 1 1 1 1 

IGM FR 1 1 1 1 1 1 

VSI FR 1 1 1 1 1 1 

GMSD FR 1 1 1 1 1 1 

NR-IQA methods 

BIQI NR 1 1 1 1 1 1 

NIQE NR 1 1 1 1 1 1 

ILNIQE NR 1 1 1 1 1 1 

BLIINDS2 NR 1 1 1 1 1 1 

DIIVINE NR 1 1 1 1 1 1 

CORNIA NR 1 1 1 1 1 1 

BRISQUE NR 1 1 1 1 1 1 

GMLOG NR 1 1 1 1 1 1 

NFERM NR 1 1 1 1 1 1 

SISBLM NR 1 1 1 1 1 1 

GWH-GLBP NR 1 1 1 1 1 1 

 

 

 

5] and MDID2016 [59] . More information about these databases

s shown as below: 

• MLIVE consists of two subsets with 15 reference images in to-

tal. The first subset contains 225 images distorted by Gaussian

blur embedded by JPEG (GB + JPEG). Similarly, the second subset

have 225 images distorted by Gaussian blur embedded by white

noise (GB + WN). These two subsets add up to 450 distorted im-

ages in total. The subjective human ratings are difference mean

opinion score (DMOS) in the range of [0,100]. 

• MDID2013, which is created from 12 reference images, is dif-

ferent from the MLIVE database, since its distorted images are

simultaneously distorted by three different kinds of distortions

(GB + JPEG + WN). The number of distorted images is 324. Be-

sides, the subjective human ratings in MDID2013 are DMOS in

the scale of [0,1]. 

• MDID2016 contains five common types of distortions, i.e., WN,

GB, JPEG, JPEG20 0 0, and contrast change, created from 20 ref-

erence images. There are 1600 distorted images in total, and

each distorted image is derived from degrading the reference

image with random types and random levels of distortions. The

subjective human ratings in MDID2016 are mean opinion score

(MOS) in the range of [0, 8]. 

To verify the performance of our method, we compare our

ethod with various IQA methods based on three commonly used

erformance measures, which are detailed as follows: 

• Spearman rank-order correlation coefficient (SRCC) is one of the

most widely-used performance measure in IQA task. It can be

formulated as 

SRCC = 1 − 6 

S(S 2 − 1) 

S ∑ 

i =1 

d 2 i , (18) 

where d i denotes the difference between the objective and sub-

jective ratings, and S denotes the image number in the testing

dataset. 
• Pearson linear correlation coefficient (PLCC) is another impor-

tant performance measure, which is calculated between subjec-

tive and objective evaluations after the nonlinear regression of
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Fig. 6. Scatter plots of DMOS versus classical FR-IQA and NR-IQA metrics on MLIVE. (From left to right) The first three rows show the scatter plots of DMOS versus classical 

FR-IQA metrics including PSNR, VSNR, MSS-SSIM, IW-SSIM, OSS-SSIM, MAD, ADM, FSIM, IGM, VSI, and GMSD, and the proposed method. (From left to right) The last three 

rows show the scatter plots of DMOS versus classical NR-IQA methods including BIQI, NIQE, ILNIQE, BLIINDS2, DIIVINE, CORNIA, BRISQUE, GMLOG, NFERM, SISBLM, GWH- 

GLBP and the proposed method. The red lines denote the fitted curves by logistic function. 
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Fig. 7. SRCC of MLIVE versus running time (log scale) of various NR-IQA methods. 
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(21) . It can be formulated as 

PLCC = 

∑ 

i (q i − q )(o i − o ) √ ∑ 

i (q i − q ) 2 (o i − o ) 2 
, (19) 

where o i and o denote the i -th image’s subjective score and

the average of all o i , respectively. Similarly, q i and q denote

the mapping objective scores after the nonlinear regression of

(21) and the average of all q i , respectively. 

• Another important performance measure we use is root mean

square error (RMSE), which measures the difference between

the subjective evaluations and the mapping objective evalua-

tions after the nonlinear mapping of (21) : 

RMSE = 

√ 

1 

S 

∑ 

(q i − o i ) 2 . (20) 

For the above PLCC and RMSE metrics, we apply the monotonic

ogistic mapping as the nonlinear mapping, which can be written

s 

(x ) = β1 

(
1 

2 

− 1 

exp (β2 (x − β3 ) + β4 x + β5 ) 

)
, (21) 

here βi (i = 1 , . . . , 5) are model parameters obtained by the curve

tting process per database, Q ( x ) represents the fitted IQA evalua-

ion, and x denotes the original IQA evaluation. 

For SVR learning on each database, distorted images of four-

fths of the reference images are selected for training, while the

emaining are adopted for testing. Such trial is repeated 10 0 0

imes, and the final result is reported as the median performance. 

. Experimental setup 

For the computation of the LBP riu2 
P,R and GCS-LBP operators, P is

et to 8, and R is set to 1, thus producing 10 and 16 histogram

ins at each scale. The proposed quality-aware feature sets are

hen extracted at 3 scales. Thus, the obtained feature set consists

f 78 dimensions in total. The threshold T is the main parameter

or our method. In experiments, we have performed our method

ith different values of T in the range of [0.1, 0.3], and the per-

ormance of our method is relatively stable. Thus we set T to 0.2

n experiments. With the whole feature set, we have trained one

VR model (denoted by S-SVR). With random subspace method,

e have trained 5 SVRs (denoted by M-SVR), where we randomly

hoose 60 dimensions of features for each SVR, and take the aver-

ge results of multiple SVRs as final output. 
. Performance analysis 

We have compared the proposed method with the prominent

R-IQA metrics including PSNR, VSNR [60] , MS-SSIM [22] , IW-SSIM

9] , OSS-SSIM [10] , VIF [23] , MAD [24] , ADM [25] , FSIM [6] , GMS

7] , IGM [61] , VSI [62] , GMSD [8] . Besides, our method is also

ompared with the prominent NR-IQA metrics, including BIQI [63] ,

IQE [34] , ILNIQE [35] , BLIINDS2 [37] , DIIVINE [38] , CORNIA [45] ,

RISQUE [36] , GMLOG [64] , NFERM [44] , SISBLM [5] , GWH-GLBP

4] . The source codes of these IQA metrics are derived from their

riginal authors. All the results of these methods are reported in

able 1 . 

Table 1 illustrates the results of SRCC, PLCC and RMSE on

LIVE, MDID2013, and MDID2016 databases. From Table 1 , we

ave the following observations: 

• Among FR-IQA methods, it is seen that the best two FR-IQA

metrics on the MLIVE, MDID2013, MDID2016 databases are VIF

and IW-SSIM. From Table 1 , we can also observe that our

method obtains better performance than VIF and IW-SSIM on

MLIVE and MDID2013 databases. 

• Among NR-IQA methods, it is observed that the top two on

MLIVE, MDID2013, and MDID2016 are our method and GWH-

GLBP. This is mainly because our method and GWH-GLBP

are specifically designed for evaluating images simultaneously

distorted with multiple distortions, while others belong to

general-purpose NR-IQA methods. 

• The results of all methods on MDID2013 are inferior to their

corresponding results on MLIVE. This is because that the dis-

torted images in MDID2013 are simultaneously distorted by

three different kinds of distortions, while the distorted images

in MLIVE are simultaneously distorted by two different kinds of

distortions. 

• With random subspace method, the performance of the pro-

posed method can be further improved. In summary, the pro-

posed method obtains competitive results with the prevailing

FR-IQA methods, and achieves better performance than other

NR-IQA methods, which demonstrates the effectiveness of the

proposed method. 

metrics on multiple distortions. Also, considering SRCC, PLCC

and RMSE, our method outperforms all the compared NR-IQA

metrics. Despite the wonderful performance of GWH-GLBP by

extracting the first-order image structures, it is still slightly in-

ferior to the proposed method. The reason is that our method

extracts more structural information including both the first-

and high-order image structures. 

In order to evaluate statistical significance, we perform two

ample T-test (significance level 0.05) between SRCC by the com-

ared NR-IQA methods across 10 0 0 trials. The T-test results are

hown in Table 2 , in which the symbol “1” or “0” indicates that

he proposed method (Pro-M-SVR) is statistically better, or indis-

inguishable than the corresponding IQA methods. From Table 2 we

an observe that our method performs statistically better than all

he compared FR- and NR-IQA metrics. 

Finally, we also display the scatter plots of DMOS versus objec-

ive quality evaluations of the prominent FR- and NR-IQA methods

n MLIVE and MDID2013 databases, as illustrated in Fig. 6 . Note

hat a good IQA algorithm should predict the perceptual quality

onsistently across subjective DMOS. From Fig. 6 we can see that

he scatter plots of our method is more concentrated, and thus

as better consistency than the prevailing FR- and NR-IQA metrics,

hich demonstrates the effectiveness of our method. 

. Computational complexity 

For most of NR-IQA methods including our method, the core

f them lies in feature extraction. For a fair comparison, we have

ompared the time cost of feature extraction of different NR-IQA
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methods, as shown in Fig. 7 . For all the methods, the experiments

are conducted in Matlab with an Inter Core i5-3470 CPU @3.2 GHz.

A scatter plot of SRCC across MLIVE dataset versus the average run-

ning time on the images with size of 768 × 512 is shown in Fig. 7 ,

from which we can see that our method obtains high quality pre-

diction accuracy with relatively low computational complexity. 

5. Conclusions 

In this paper, we have proposed a novel referenceless metric

to evaluate the perceptual quality of multiply-distorted images

based on structural degradation, inspired by the fact that image

structures are crucial for visual quality perception. Specifically, our

metric considers both the first- and high-oder image structures.

To better exploit such image structures, we have used two kind of

LBP operators to extract the first- and high-order structural infor-

mation, from gradient-magnitude and contrast-normalized maps,

respectively. In order to avoid overfitting, we use random subspace

method in the feature space, and randomly choose portion of

features for training, thus without adding the time complexity.

Experiments show that the proposed method presents better

prediction performance in comparison with other known FR- and

NR-IQA metrics on public multiply-distorted image databases. 
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